Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
Biomed Opt Express ; 15(4): 2433-2450, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633075

RESUMEN

In recent years, imaging photoplethysmograph (iPPG) pulse signals have been widely used in the research of non-contact blood pressure (BP) estimation, in which BP estimation based on pulse features is the main research direction. Pulse features are directly related to the shape of pulse signals while iPPG pulse signals are easily disturbed during the extraction process. To mitigate the impact of pulse feature distortion on BP estimation, it is necessary to eliminate interference while retaining valuable shape details in the iPPG pulse signal. Contact photoplethysmograph (cPPG) pulse signals measured at rest can be considered as the undisturbed reference signal. Transforming the iPPG pulse signal to the corresponding cPPG pulse signal is a method to ensure the effectiveness of shape details. However, achieving the required shape accuracy through direct transformation from iPPG to the corresponding cPPG pulse signals is challenging. We propose a method to mitigate this challenge by replacing the reference signal with an average cardiac cycle (ACC) signal, which can approximately represent the shape information of all cardiac cycles in a short time. A neural network using multi-scale convolution and self-attention mechanisms is developed for this transformation. Our method demonstrates a significant improvement in the maximal information coefficient (MIC) between pulse features and BP values, indicating a stronger correlation. Moreover, pulse signals transformed by our method exhibit enhanced performance in BP estimation using different model types. Experiments are conducted on a real-world database with 491 subjects in the hospital, averaging 60 years of age.

3.
Luminescence ; 39(5): e4764, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684508

RESUMEN

Ultrasensitive, selective, and non-invasive detection of fibrin in human serum is critical for disease diagnosis. So far, the development of high-performance and ultrasensitive biosensors maintains core challenges for biosensing. Herein, we designed a novel ribbon nanoprobe for ultrasensitive detection of fibrin. The probe contains gold nanoparticles (AuNPs) that can not only link with homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) to recognize fibrin but also carry long DNA belts to form G-quadruplex-based DNAzyme, catalyzing the chemiluminescence of luminol-hydrogen peroxide (H2O2) reaction. Combined with the second amplification procedure of rolling circle amplification (RCA), the assay exhibits excellent sensitivity with a detection limit of 0.04 fmol L-1 fibrin based on the 3-sigma. Furthermore, the biosensor shows high specificity on fibrin in samples because the structure of antibody-fibrin-homing peptide was employed to double recognize fibrin. Altogether, the simple and inexpensive approach may present a great potential for reliable detection of biomarkers.


Asunto(s)
Técnicas Biosensibles , Fibrina , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Fibrina/química , Fibrina/análisis , Humanos , ADN Catalítico/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Límite de Detección , Luminol/química , G-Cuádruplex
4.
Artículo en Inglés | MEDLINE | ID: mdl-38551821

RESUMEN

Arterial stiffness (AS) serves as a crucial indicator of arterial elasticity and function, typically requiring expensive equipment for detection. Given the strong correlation between AS and various photoplethysmography (PPG) features, PPG emerges as a convenient method for assessing AS. However, the limitations of independent PPG features hinder detection accuracy. This study introduces a feature selection method leveraging the interactive relationships between features to enhance the accuracy of predicting AS from a single-channel PPG signal. Initially, an adaptive signal interception method was employed to capture high-quality signal fragments from PPG sequences. 58 PPG features, deemed to have potential contributions to AS estimation, were extracted and analyzed. Subsequently, the interaction factor (IF) was introduced to redefine the interaction and redundancy between features. A feature selection algorithm (IFFS) based on the IF was then proposed, resulting in a combination of interactive features. Finally, the Xgboost model is utilized to estimate AS from the selected features set. The proposed approach is evaluated on datasets of 268 male and 124 female subjects, respectively. The results of AS estimation indicate that IFFS yields interacting features from numerous sources, rejects redundant ones, and enhances the association. The interaction features combined with the Xgboost model resulted in an MAE of 122.42 and 142.12 cm/sec, an SDE of 88.16 and 102.56 cm/sec, and a PCC of 0.88 and 0.85 for the male and female groups, respectively. The findings of this study suggest that the stated method improves the accuracy of predicting AS from single-channel PPG, which can be used as a non-invasive and cost-effective screening tool for atherosclerosis.

5.
J Am Chem Soc ; 146(7): 4752-4761, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334447

RESUMEN

Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P-S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge-charge cycles, elevating the modulus of K-P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.

6.
Angew Chem Int Ed Engl ; 63(7): e202307802, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37515479

RESUMEN

Lithium (Li) metal batteries (LMBs) are the "holy grail" in the energy storage field due to their high energy density (theoretically >500 Wh kg-1 ). Recently, tremendous efforts have been made to promote the research & development (R&D) of pouch-type LMBs toward practical application. This article aims to provide a comprehensive and in-depth review of recent progress on pouch-type LMBs from full cell aspect, and to offer insights to guide its future development. It will review pouch-type LMBs using both liquid and solid-state electrolytes, and cover topics related to both Li and cathode (including LiNix Coy Mn1-x-y O2 , S and O2 ) as both electrodes impact the battery performance. The key performance criteria of pouch-type LMBs and their relationship in between are introduced first, then the major challenges facing the development of pouch-type LMBs are discussed in detail, especially those severely aggravated in pouch cells compared with coin cells. Subsequently, the recent progress on mechanistic understandings of the degradation of pouch-type LMBs is summarized, followed with the practical strategies that have been utilized to address these issues and to improve the key performance criteria of pouch-type LMBs. In the end, it provides perspectives on advancing the R&Ds of pouch-type LMBs towards their application in practice.

7.
Cancer Med ; 13(1): e6720, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111983

RESUMEN

BACKGROUND: Although adjuvant chemotherapy (ACT) is widely used to treat patients with Stage II/III colorectal cancer (CRC), administering ACT to specific patients remains a challenge. The decision to ACT requires an accurate assessment of recurrence risk and absolute treatment benefit. However, the traditional TNM staging system does not accurately assess a patient's individual risk of recurrence. METHODS: To identify recurrence risk-related genetic factors for Stage II/III CRC patients after radical surgery, we conducted an analysis of whole-exome sequencing of 47 patients with Stage II/III CRC who underwent radical surgery at five institutions. Patients were grouped into non-recurrence group (NR, n = 24, recurrence-free survival [RFS] > 5 years) and recurrence group (R, n = 23, RFS <2 years). The TCGA-COAD/READ cohort was employed as the validation dataset. RESULTS: A recurrence-predictive model (G8plus score) based on eight gene (CUL9, PCDHA12, HECTD3, DCX, SMARCA2, FAM193A, AATK, and SORCS2) mutations and tumor mutation burden/microsatellite instability (TMB/MSI) status was constructed, with 97.87% accuracy in our data and 100% negative predictive value in the TCGA-COAD/READ cohort. For the TCGA-COAD/READ cohort, the G8plus-high group had better RFS (HR = 0.22, p = 0.024); the G8plus-high tumors had significantly more infiltrated immune cell types, higher tertiary lymphoid structure signature scores, and higher immunological signature scores. The G8plus score was also a predict biomarker for immunotherapeutic in advanced CRC in the PUCH cohort. CONCLUSIONS: In conclusion, the G8plus score is a powerful biomarker for predicting the risk of recurrence in patients with stage II/III CRC. It can be used to stratify patients who benefit from ACT and immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Humanos , Pronóstico , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Estadificación de Neoplasias , Biomarcadores de Tumor/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-37902771

RESUMEN

In developing low-temperature cofired ceramic (LTCC) technology for high-density packaging or advanced packaged electronics, matching the coefficient of thermal expansion (CTE) among the packaged components is a critical challenge to improve reliability. The CTEs of solders and organic laminates are usually larger than 16.0 ppm of °C1-, while most low-permittivity (εr) dielectric ceramics have CTEs of less than 10.0 ppm °C1-. Therefore, a good CTE match between organic laminates and dielectric ceramics is required for further LTCC applications. In this paper, we propose a high-CTE BaSO4-BaF2 LTCC as a potential solution for high-reliability packaged electronics. The BaSO4-BaF2 ceramics have the advantages of a wide low-temperature sintering range (650-850 °C), low loss, temperature stability, and Ag compatibility, ensuring excellent performance in LTCC technology. The 95 wt %BaSO4-5 wt %BaF2 ceramic has a εr of 9.1, a Q × f of 40,100 GHz @11.03 GHz (Q = 1/tan δ), a temperature coefficient of the resonant frequency of -11.2 ppm °C1-, a CTE of +21.8 ppm °C1-, and a thermal conductivity of 1.3 W mK-1 when sintered at 750 °C. Furthermore, a dielectric resonant antenna using BaSO4-BaF2 ceramics, a typically packaged component of LTCC and laminate, was designed and used to verify the excellent performance by a gain of 6.0 dBi at a central frequency of 8.97 GHz and a high radiation efficiency of 90% over a bandwidth of 760 MHz. Good match and low thermal stress were found in the packaged components of BaSO4-BaF2 ceramics, organic laminates, and Sn-based solders by finite element analysis, proving the potential of this LTCC for high-reliability packaged electronics.

9.
Nat Commun ; 14(1): 2655, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160951

RESUMEN

The electrolyte solvation structure and the solid-electrolyte interphase (SEI) formation are critical to dictate the morphology of lithium deposition in organic electrolytes. However, the link between the electrolyte solvation structure and SEI composition and its implications on lithium morphology evolution are poorly understood. Herein, we use a single-salt and single-solvent model electrolyte system to systematically study the correlation between the electrolyte solvation structure, SEI formation process and lithium deposition morphology. The mechanism of lithium deposition is thoroughly investigated using cryo-electron microscopy characterizations and computational simulations. It is observed that, in the high concentration electrolytes, concentrated Li+ and anion-dominated solvation structure initiate the uniform Li nucleation kinetically and favor the decomposition of anions rather than solvents, resulting in inorganic-rich amorphous SEI with high interface energy, which thermodynamically facilitates the formation of granular Li. On the contrary, solvent-dominated solvation structure in the low concentration electrolytes tends to exacerbate the solvolysis process, forming organic-rich mosaic SEI with low interface energy, which leads to aggregated whisker-like nucleation and growth. These results are helpful to tackle the long-standing question on the origin of lithium dendrite formation and guide the rational design of high-performance electrolytes for advanced lithium metal batteries.

10.
ACS Appl Mater Interfaces ; 15(15): 19129-19136, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37018740

RESUMEN

Microwave dielectric ceramics with permittivity (εr) ∼ 20 play an important role in massive multiple-input multiple-output (MIMO) technology in 5G. Although fergusonite-structured materials with low dielectric loss are good candidates for 5G application, tuning the temperature coefficient of resonant frequency (TCF) remains a problem. In the present work, smaller V5+ ions (rV = 0.355 Å, with coordination number (CN) = 4) were substituted for Nb5+ (rNb = 0.48 Å with CN = 4) in the Nd(Nb1-xVx)O4 ceramics, which, according to in situ X-ray diffraction data, lowered the fergusonite-to-scheelite phase transition (TF-S) to 400 °C for x = 0.2. The thermal expansion coefficient (αL) of the high-temperature scheelite phase was +11 ppm/°C, whereas for the low-temperature fergusonite phase, it was + 14 < αL < + 15 ppm/°C. The abrupt change in αL, the associated negative temperature coefficient of permittivity (τε), and the minimum value of εr at TF-S resulted in a near-zero TCF ∼ (+7.8 ppm/°C) for Nd(Nb0.8V0.2)O4 (εr ∼ 18.6 and Qf ∼ 70,100 GHz). A method to design near-zero TCF compositions based on modulation of τε and αL at TF-S is thus demonstrated that may also be extended to other fergusonite systems.

11.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 930-941, 2023 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-36994563

RESUMEN

As an excellent hosting matrices for enzyme immobilization, metal-organic framework (MOFs) provides superior physical and chemical protection for biocatalytic reactions. In recent years, the hierarchical porous metal-organic frameworks (HP-MOFs) have shown great potential in enzyme immobilization due to their flexible structural advantages. To date, a variety of HP-MOFs with intrinsic or defective porous have been developed for the immobilization of enzymes. The catalytic activity, stability and reusability of enzyme@HP-MOFs composites are significantly enhanced. This review systematically summarized the strategies for developing enzyme@HP-MOFs composites. In addition, the latest applications of enzyme@HP-MOFs composites in catalytic synthesis, biosensing and biomedicine were described. Moreover, the challenges and opportunities in this field were discussed and envisioned.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Porosidad , Enzimas Inmovilizadas/química , Biocatálisis , Catálisis
12.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903763

RESUMEN

CNTs and CNT-MgO, CNT-MgO-Ag, and CNT-MgO-Ag-BaO nanocomposites were grown on alloy substrates using an electrophoretic deposition method and their field emission (FE) and hydrogen sensing performances were investigated. The obtained samples were characterized by SEM, TEM, XRD, Raman, and XPS characterizations. The CNT-MgO-Ag-BaO nanocomposites showed the best FE performance with turn-on and threshold fields of 3.32 and 5.92 V.µm-1, respectively. The enhanced FE performances are mainly attributed to the reductions of the work function, and the enhancement of the thermal conductivity and emission sites. The current fluctuation of CNT-MgO-Ag-BaO nanocomposites was only 2.4% after a 12 h test at the pressure of 6.0 × 10-6 Pa. In addition, for the hydrogen sensing performances, the CNT-MgO-Ag-BaO sample showed the best increase in amplitude of the emission current among all the samples, with the mean IN increases of 67%, 120%, and 164% for 1, 3, and 5 min emissions, respectively, under the initial emission currents of about 1.0 µA.

13.
Biotechnol Lett ; 45(2): 255-262, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36550338

RESUMEN

S-Adenosylmethionine (SAM) is a crucial small-molecule metabolite widely used in food and medicine. The development of high-throughput biosensors for SAM biosynthesis can significantly improve the titer of SAM. This paper constructed a synthetic transcription factor (TF)-based biosensor for SAM detecting in Saccharomyces cerevisiae. The synthetic TF, named MetJ-hER-VP16, consists of an Escherichia coli-derived DNA-binding domain MetJ, GS linker, the human estrogen receptor binding domain hER, and the viral activation domain VP16. The synthetic biosensor is capable of sensing SAM in a dose-dependent manner with fluorescence as the output. Additionally, it is tightly regulated by the inducer SAM and ß-estradiol, which means that the fluorescence output is only available when both are present together. The synthetic SAM biosensor could potentially be applied for high-throughput metabolic engineering and is expected to improve SAM production.


Asunto(s)
Técnicas Biosensibles , S-Adenosilmetionina , Saccharomyces cerevisiae , Factores de Transcripción , Humanos , Escherichia coli/metabolismo , Etopósido/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Front Psychiatry ; 13: 946383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276337

RESUMEN

Shared decision-making (SDM) is a scientific and reasonable decision-making model. However, whether physicians choose SDM is usually influenced by many factors. It is not clear whether the strained doctor-patient relationship will affect physicians' willingness to choose SDM. Through a survey by questionnaire, 304 physicians' evaluations of doctor-patient relationship (DPR) were quantified by the difficult DPR questionnaire-8. Their preferences for SDM and the reasons were also evaluated. The correlation between physicians' evaluations of DPR and their preferences for SDM were analyzed. 84.5% physicians perceived DPR as poor or strained, 53.3% physicians preferred SDM, mainly because of the influences of medical ethics and social desirability bias. Their preferences for SDM were not significantly correlated with their evaluations of DPR (P > 0.05). Physicians with different evaluations of DPR (good, poor, and strained) all had similar preferences for SDM (42.6, 56.4, and 42.9%), with no significant difference (P > 0.05). There was no correlation between physicians' evaluations of DPR and their preferences for SDM. Physicians' evaluations of poor DPR did not affect their preferences for SDM. This may be influenced by the medical ethics and social desirability bias.

15.
J Transl Med ; 20(1): 365, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962408

RESUMEN

BACKGROUND: Efficacy of conventional sequential chemotherapy paradigm for advanced gastric cancer (AGC) patients has largely plateaued. Dynamic molecular changes during and after sequential chemotherapy have not been fully delineated. We aimed to profile the molecular evolutionary process of AGC patients during sequential chemotherapy by next generation sequencing (NGS) of plasma circulating tumor DNA (ctDNA). METHODS: A total of 30 chemo-naïve patients who were diagnosed with unresectable advanced or metastatic stomach adenocarcinoma were enrolled. All patients received sequential chemotherapy regimens following the clinical guideline. One hundred and eight serial peripheral blood samples were collected at baseline, radiographical assessment and disease progression. Plasma ctDNA was isolated and a customized NGS panel was used to detect the genomic features of ctDNA including single nucleotide variants (SNVs) and gene-level copy number variations (CNVs). KEGG pathway enrichment analysis was performed. RESULTS: Platinum-based combination chemotherapy was administrated as first-line regimen. Objective response rate was 50% (15/30). Patients with higher baseline values of copy number instability (CNI), CNVs and variant allel frequency (VAF) were more sensitive to platinum-based first-line regimens. Tumor mutation burden (TMB), CNI and CNV burden at partial response and stable disease were significantly lower than those at baseline, where at progressive disease they recovered to baseline levels. Dynamic change of TMB (ΔTMB) was correlated with progression-free survival of first-line treatment. Fluctuating changes of SNVs and gene-level CNVs could be observed during sequential chemotherapy. Under the pressure of conventional chemotherapy, the number of novel gene-level CNVs were found to be higher than that of novel SNVs. Such novel molecular alterations could be enriched into multiple common oncologic signaling pathways, including EGFR tyrosine kinase inhibitor resistance and platinum drug resistance pathways, where their distributions were found to be highly heterogenous among patients. The impact of subsequent regimens, including paclitaxel-based and irinotecan-based regimens, on the molecular changes driven by first-line therapy was subtle. CONCLUSION: Baseline and dynamic changes of genomic features of ctDNA could be biomarkers for predicting response of platinum-based first-line chemotherapy in AGC patients. After treatment with standard chemotherapy regimens, convergent oncologic pathway enrichment was identified, which is yet characterized by inter-patient heterogenous gene-level CNVs.


Asunto(s)
ADN Tumoral Circulante , Neoplasias Pulmonares , Neoplasias Gástricas , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Variaciones en el Número de Copia de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/patología , Mutación/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
16.
Adv Mater ; 34(34): e2203710, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35785496

RESUMEN

Significant challenges remain in developing rechargeable zinc batteries mainly because of reversibility problems on zinc-metal anodes. The dendritic growth and hydrogen evolution on zinc electrodes are major obstacles to overcome in developing practical and safe zinc batteries. Here, a dendrite-free and hydrogen-free Zn-metal anode with high Coulombic efficiency up to 99.6% over 300 cycles is realized in a newly designed nonaqueous electrolyte, which comprises an inexpensive zinc salt, zinc acetate, and a green low-cost solvent, dimethyl sulfoxide. Surface transformation on Cu substrate plays a critical role in facilitating the dendrite-free deposition process, which lowers the diffusion energy barrier of the Zn atoms, leading to a uniform and compact thin film for zinc plating. Furthermore, in situ electrochemical atomic force microscopy reveals the plating process via a layer-by-layer growth mechanism and the stripping process through an edge-dissolution mechanism. In addition, Zn||Mo6 S8 full cells exhibit excellent electrochemical performance in terms of cycling stability and rate capability. This work presents a new opportunity to develop nonaqueous rechargeable zinc batteries.

17.
Angew Chem Int Ed Engl ; 61(32): e202203693, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35388586

RESUMEN

The issues of inherent low anodic stability and high flammability hinder the deployment of the ether-based electrolytes in practical high-voltage lithium metal batteries. Here, we report a rationally designed ether-based electrolyte with chlorine functionality on ether molecular structure to address these critical challenges. The chloroether-based electrolyte demonstrates a high Li Coulombic efficiency of 99.2 % and a high capacity retention >88 % over 200 cycles for Ni-rich cathodes at an ultrahigh cut-off voltage of 4.6 V (stable even up to 4.7 V). The chloroether-based electrolyte not only greatly improves electrochemical stabilities of Ni-rich cathodes under ultrahigh voltages with interphases riched in LiF and LiCl, but possesses the intrinsic nonflammable safety feature owing to the flame-retarding ability of chlorine functional groups. This study offers a new approach to enable ether-based electrolytes for high energy density, long-life and safe Li metal batteries.

18.
Int J Oral Maxillofac Implants ; 37(2): 235-249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476853

RESUMEN

PURPOSE: This systematic review aimed to assess the clinical efficacy of antibiotics when used as an adjunct in treating peri-implant diseases. MATERIALS AND METHODS: A systematic search of papers published between January 1980 and March 2020 was conducted. Randomized clinical trials with at least 10 patients who had peri-implant diseases, treated with or without adjunctive antibiotics in combination with surgical or nonsurgical therapies, and with a minimum of at least 3 months of follow-up were included. Meta-analyses were conducted to analyze weighted mean differences in probing depth reduction, radiographic bone level gain, and odds ratio of treatment success. RESULTS: From the 856 articles identified, 10 articles met the inclusion criteria and were selected. Of these, 7 articles were used for the meta-analysis. The adjunctive use of antibiotics in the treatment of peri-implant diseases yielded significantly greater probing depth reduction (weighted mean differences = 0.56 mm at 3 months, P = .001; 0.77 mm at 6 months, P < .00001; 0.92 mm at 12 months, P < .00001), radiographic bone level gain (weighted mean differences = 0.64 mm, P = .03), and treatment success (odds ratio = 1.74, P = .04) compared to the same treatment without antibiotics. CONCLUSION: Based on the existing evidence, the use of adjunctive antibiotics to treat peri-implant diseases, especially peri-implantitis, provided potential benefits in clinical outcomes for up to 12 months posttherapy.


Asunto(s)
Implantes Dentales , Mucositis , Periimplantitis , Estomatitis , Antibacterianos/uso terapéutico , Implantes Dentales/efectos adversos , Humanos , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Periimplantitis/terapia
19.
Adv Mater ; 34(18): e2109356, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35262214

RESUMEN

There remain significant challenges in developing fast-charging materials for lithium-ion batteries (LIBs) due to sluggish ion diffusion kinetics and unfavorable electrolyte mass transportation in battery electrodes. In this work, a mesoporous single-crystalline lithium titanate (MSC-LTO) microrod that can realize exceptional fast charge/discharge performance and excellent long-term stability in LIBs is reported. The MSC-LTO microrods are featured with a single-crystalline structure and interconnected pores inside the entire single-crystalline body. These features not only shorten the lithium-ion diffusion distance but also allow for the penetration of electrolytes into the single-crystalline interior during battery cycling. Hence, the MSC-LTO microrods exhibit unprecedentedly high rate capability, achieving a specific discharge capacity of ≈174 mAh g-1 at 10 C, which is very close to its theoretical capacity, and ≈169 mAh g-1 at 50 C. More importantly, the porous single-crystalline microrods greatly mitigate the structure degradation during a long-term cycling test, offering ≈92% of the initial capacity after 10 000 cycles at 20 C. This work presents a novel strategy to engineer porous single-crystalline materials and paves a new venue for developing fast-charging materials for LIBs.

20.
Int J Med Robot ; 18(3): e2378, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35133713

RESUMEN

BACKGROUND: Wearing appropriate active prosthesis is the guarantee of daily life for amputees. Normally the controller of the traditional active transfemoral prosthesis is designed based on the mathematical model. The modelling error and the external interference will reduce the control accuracy of the system and make the prosthesis unable to operate in the desired trajectory. METHODS: Firstly, combined with time delay estimation (TDE), a model-free robust integral sliding mode impedance controller is designed. This method not only suppress the impedance error, but also eliminate the nonlinear relationship and disturbance in the dynamic model. Secondly, an adaptive law is proposed to update the controller gain, which provide stable control effect. Thirdly, the stability of prosthesis closed-loop system is proved by Lyapunov stability theory. Finally, the motor torque is used to drive each joint, and Matlab/Simscape is used to verify the prosthesis control system. RESULTS: From the result of the simulation experiment, the control method has a good tracking effect on each joint. The root mean square error and mean absolute errors of each joint's angle tracking error are 0.6123°, 1.9976°, 0.5574° and 0.2635°, 1.8175°, 0.4796°. Compared with the controller without adaptive gain and impedance control, the control effect is improved, and the plantar pressure of amputees is closer to the sound side. CONCLUSIONS: Comparing the results of different controllers, the adaptive integral sliding mode impedance controller with TDE can better track the expected angles of each joint. The gait is more normal. The walking performance of the prosthesis wearers is improved.


Asunto(s)
Tobillo , Miembros Artificiales , Humanos , Impedancia Eléctrica , Dedos del Pie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...